Evaluation of Model Simulated Ozone and its Precursors Using the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA) during the Michigan-Ontario Ozone Source Experiment (MOOSE)

2023 CESM Workshop

Noribeth Mariscal¹, Yaoxian Huang¹, Louisa Emmons², Duseong S. Jo², Ying Xiong¹, and Jiajue Chai³

¹Wayne State University, Detroit, MI ; ²Atmospheric Chemistry Observations & Modeling Lab, National Center for Atmospheric Research, Boulder, CO ; ³State University of New York, Syracuse, NY

Contact: nmariscal@wayne.edu

OZONE IN SEMI

- O₃ levels continue to exceed NAAQS standards in SEMI.
- Many factors are associated with O₃ exceedance (e.g., precursor emissions, long-range transport, meteorology, land-lake interactions).
- More detailed and innovative measurements and modeling studies are necessary for understanding O₃ production and loss in SEMI.

Monroe, MI

Detroit, MI

East China, MI

Sarnia, ON

Black residents of Detroit brace themselves for rougher air quality conditions

SHARE & SAVE - 🕈 🎔 🗹 🚥

CLIMATE IN CRISIS

AK NEWS

Black residents of Detroit brace themselves for rougher air quality conditions

bowlerodetroit.com

Detroit's air quality is among the worst in the world because of the Canadian wildfires, exposing an already-vulnerable population to more health risks.

OBJECTIVES

- A. Investigate the sensitivity of model simulated O₃ and its precursors to model horizontal grid resolutions in MUSICAv0.
 - 1. Create ~7 km (1/16°) grid over Michigan.
 - 2. Implement and evaluate new grid.
- B. Quantify the drivers of O₃ nonattainment in Southeast Michigan using optimal MUSICAv0 model grid.
 - 1. Implement diurnal cycle for NO emissions
 - 2. Identify and quantify physical and chemical drivers of O_3 production and loss in SEMI through emission sensitivity experiments.

MICHIGAN-ONTARIO OZONE SOURCE EXPERIMENT (MOOSE)

- Led by Michigan Department of Environment, Great Lakes, and Energy (EGLE), with participants from universities, federal agencies, and Environment Climate Change Canada.
- Seeks to define potential attainment strategies in SEMI region and better understand what contributes to excess O₃.
- Phase I: May 24 June 30, 2021
- Phase II: June 6-28, 2022
- Varied, High-Resolution Measurements
 - Aircraft (NASA G-III), Mobile Lab (Aerodyne), Stationary

From left to right: Noribeth Mariscal, Erin Browne, Jiajue Chai, Debatosh Partha, Yaoxian Huang, Heejeong Kim

New Haven

MUSICAv0

<u>MU</u>Iti-<u>S</u>cale Infrastructure for <u>C</u>hemistry & <u>A</u>erosols, Version 0

- Configuration of CESM/CAM-Chem
- Uses Spectral Element (SE) Dynamical Core
- Regional Refinement (RR)
- Described in Pfister et al (2020)
- Default Resolution:
 - ~14 km Latitude x ~14 km Longitude (1/8°) over CONUS
 - 32 Vertical Layers (~40 km Model Top)

Model Configuration:

- \rightarrow April-August 2021
- \rightarrow Initial Conditions based on SE 1° CAM-Chem Run
- \rightarrow NASA MERRA-2 (Resolution: 0.625° x 0.5° every 3 hours)
- \rightarrow MOZART-TS2
- \rightarrow CAMS-GLOB-ANTv5.1, CAMS-GLOB-AIRv2.1, QFED, MEGANv2.1

GRID SETUP

Regional Refinement over Michigan

- Community Mesh Generation Toolkit
- ne30x8 CONUS \rightarrow ne30x16 MICH
- ~7 km Latitude x ~7 km Longitude over Michigan
- Smooth transition (halo) between resolutions to mitigate potential errors

• Time Step: 3.75 mins

COMPARISON WITH SEMI STATIONARY SITE

8

COMPARISON WITH AML

 $MB = \overline{M} - \overline{O}$

COMPARISON WITH AML

 $MB = \overline{M} - \overline{O}$

IMPLEMENTATION OF DIURNAL CYCLE FOR NO

CAMSv5.1 NO Emissions in e¹² molecules cm⁻² s⁻¹

	MICH [kt]	SEMI [kt]	SEMI/MICH
AGS	0.46	0.04	9.0%
AWB	0.10	0.01	10.8%
ENE	9.44	2.86	30.3%
RES	1.03	0.48	47 .1%
TNR	1.99	0.36	18.1%
TRO	15.13	3.50	23.2%

- Important in evaluating model uncertainties
- Diurnal variations for anthropogenic emissions are NOT considered in CESM2.
- Heavily influences regions with many anthropogenic sources.

ON-GOING & FUTURE WORK

- Complete MUSICAv0 runs with diurnal cycle for NO emissions for the ne30x8 CONUS and ne30x16 Michigan grids
 - Regrid emission files to include sectors
 - Add in diurnal information files
 - Evaluate runs with MOOSE Phase I campaign datasets
- Run suite of sensitivity experiments to quantify contribution of emission from various sectors and long-range transport on O₃ in SEMI.
- Combine MUSICAv0 with an exposure model to study impacts of O₃ nonattainment on human health in SEMI.

Case	Grid Name	Resolution (km)	Setup
1	ne30x16	~7	Control
2	ne30x16	~7	TRO [*] -OFF
3	ne30x16	~7	ENE [*] -OFF
4	ne30x16	~7	OTH [*] -OFF
5	ne30x16	~7	ALL [*] -OFF

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation (NSF) under Grant No. 1735038 and 2126097, the National Center for Atmospheric Research (NCAR), which is a major facility sponsored by NSF under Cooperative Agreement No. 1755088, and in part by funding provided by the National Aeronautics and Space Administration (NASA), under award number 80NSSC20M0124, Michigan Space Grant Consortium (MSGC).

I would like to acknowledge the high-performance computing support from **Cheyenne** (DOI: <u>https://doi.org/10.5065/D6RX99HX</u>) provided by NCAR's Computational and Information Systems Laboratory, sponsored by NSF, and the **Grid High Performance Computing** (HPC) support from Wayne State University.

I'd like to thank:

- My collaborators: Yaoxian Huang (WSU), Louisa K. Emmons (NCAR), Duseong S. Jo (NCAR), Ying Xiong (WSU), and Jiajue Chai (SUNY)
- Tara Yacovitch, Brian Lerner, and Francesca Majluf of Aerodyne Research, Inc. and the rest of the MOOSE Science Teams for the campaign datasets used in this study.

thank you!

Contact: nmariscal@wayne.edu

questions?

backup slides.

MODEL CONFIGURATION

- April-August 2021
 - April used as a spin up
- Initial conditions based on SE 1° CAM-Chem run
- NASA MERRA-2 (Resolution: 0.625° x 0.5° every 3 hours)
 - Meteorological nudging not applied to Michigan [41°N, 272.5°W]

• MOZART-TS2

- Comprehensive representation of tropospheric and stratospheric chemistry with updated gas-phase chemistry for isoprene and terpene species
- MAM4: Spatial distribution of aerosols
- VBS-SOA: secondary organic aerosols separation

• Emissions

- CAMS-GLOB-ANTv5.1 (Anthropogenic)
- CAMS-GLOB-AIRv2.1 (Aircraft)
- QFED (Biomass Burning)
- MEGANv2.1 (Biogenic)

EMISSIONS

Anthropogenic and biomass burning emissions are generated offline and regridded to corresponding resolution.

- •Copernicus Atmosphere Monitoring Service Version 5.1 (CAMS-GLOB-ANTv5.1)
 - Global anthropogenic emissions based on monthly emissions from EDGARv5 and CEDSv2
 - Resolution: 0.1° x 0.1°
 - Sectors: ENE, RCO, TRO, TNR, FEF, IND, SLV, AGR, MMA, SHP, SWD

•CAMS-GLOB-AIRv2.1

- Aircraft emissions
- Resolution: 0.5° x 0.5°

STATIONARY MEASUREMENTS

Site Name	Coordinates	Description ¹	Types of Measurements ²
Allen Park	42.22°N, 276.8°W	Suburban	O ₃ , NO _y , T, WS, WD
E 7 Mile	42.43°N, 277.0°W	Urban Suburban Mix	O ₃ , NO ₂ , T, WS, WD
New Haven	42.73°N, 277.21°W	Coastal	o ₃ , t, ws, wd
Oak Park	42.47°N, 276.82°W	Suburban	o ₃ , t, ws, wd
Port Huron	42.95°N, 277.55°W	Downwind	o ₃ , t, ws, wd
Trinity St Marks ³	42.3°N, 276.87°W	Urban	O ₃ , CO, NO, NO ₂ , WS, WD
Ypsilanti	42.24°N, 276.4°W	Suburban	o ₃ , t, ws, wd

¹Description of where the site is located.

 ${}^{2}O_{3} = Ozone; NO = Nitric Oxide; NO_{2} = Nitrogen Dioxide; NO_{y} = sum of NO_{x} and all other reactive nitrogen; T = Temperature; WD = Wind Direction; WS = Wind Speed; CO = Carbon Monoxide. ³The Trinity St Marks site contains measurements of CO, NO₂, WS, and WD collected from MASN, as well as measurements of O₃, NO, and NO₂ from Chai et al., 2023, In Preparation.$

Trinity St. Marks

New Haven

COMPARISON WITH SEMI STATIONARY SITE

 $MB = \overline{M} - \overline{O}$

COMPARISON WITH SEMI STATIONARY SITE

SENSITIVITY EXPERIEMENTS

• Run suite of sensitivity experiments to quantify contribution of emission from various sectors and long-range transport on O_3 in SEMI.

Table 1: Anthropogenic emission totals for May and June 2021 basedon the CAMS-GLOB-ANTv5.1 emission inventory for Michigan andSoutheast Michigan.

Species	Molecular Weight [g/mol]	Michigan [Gg]	Southeast Michigan [Gg]
СО	28	201.6	59
NO	30	34.3	10
SO ₂	64	19.4	6.5
C_2H_6	30	1.2	0.3
C_3H_8	44	1.1	0.5
НСНО	30	0.7	0.2
BENZENE	78	0.8	0.3
TOLUENE	92	3.3	1.6
XYLENES	106	6.1	3
BIGALK *	72	9.8	3.3
BIGENE *	56	1.1	0.4

Case	Grid Name	Resolution (km)	Setup
1	ne30x16	~7	Control
2	ne30x16	~7	TRA [*] -OFF
3	ne30x16	~7	IND [*] -OFF
4	ne30x16	~7	OTH [*] -OFF
5	ne30x16	~7	ALL [*] -OFF

Help identify the impact on O_3 from different emission sectors, in order to better determine how to reach O_3 attainment in SEMI.

^{*}BIGALK represents lumped alkanes of C>3 (i.e., butanes, $C_4H_{10'}$ and larger); BIGENE represents lumped alkenes of C>3 (i.e., butenes and larger) (Emmons et al., 2020).

CAMSv5.1 NO Emissions in e¹² molecules cm⁻² s⁻¹

0.0	0.0015	0.003	0.0045	0.006

