

Description of Short-Lived Halogen (SLH) chemistry in CESM2: Interconnection between Natural and Anthropogenic Sources

Rafael P. Fernandez^{1,2}

Carlos A. Cuevas³, Qinyi Li³, Alfonso Saiz-Lopez³

Javier A. Barrera⁵, Adriana Bossolasco⁵, Amelia Reynoso², Orlando Tomazzeli¹

Douglas Kinnison⁴, Simone Tilmes⁴, Francis Vitt⁴, Jean-Francois Lamarque⁴

¹ Institute for Interdisciplinary Science, National Research Council (ICB-CONICET), Mendoza, 5501, Argentina
 ² School of Natural Sciences, National University of Cuyo (FCEN-UNCuyo), Mendoza, 5501, Argentina
 ³ Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, 28006, Spain
 ⁴ National Center for Atmospheric Research (NCAR), Boulder, CO, USA
 ⁵ National Scientific and Technical Research Council (CONICET), Argentina

Outline

- **1.** Description of the dominant reactive transport pathways of SLH in CAM-Chem
 - Similarities and differences between Chlorine, Bromine and Iodine burdens
 - Dominant halogen atom (Cl, Br and I) sources in the troposphere and stratosphere
 - Chemical partitioning of reactive and reservoir halogen species
 - Inter-comparison between inorganic halogen distributions between CESM1 and CESM2
- 2. CAM-Chem sensitivity to dynamical configurations in CESM2
 - Evaluation of nudging (NDG), Specified Dynamics (SD) and Free Running (FR) setups
 - Dependence on spatial (f19 vs f09) and vertical (L32 vs L56) resolution
- 3. Influence of SLH over the oxidative capacity of the troposphere
 - Importance of including SLH in climate evolution studies (next talk by A. Saiz-Lopez)

Low-Resolution CAM-Chem: f19 (2°x2.5°) and 32L (40 km top)

Reactive transport of SLH-VSL: Sources and Sinks

CESM1 vs CESM2: Chlorine

CESM1 vs CESM2: Chlorine

•Stratospheric chlorine remains equivalent between model versions •Top of model Cl_v increases by 2.5-3.0 % due to higher PGI in CESM2

- •CESM1 shows larger Cl_y in the LT, while CESM2 shows larger Cl_y in the UT •PGI is aprox. 2 times larger in CESM2
 - Minimum Cl_v values are observed in the TTL

VSLS Best Estimate (ppt)	SGI ¹	PGI ²	Total (SGI + PGI) ³	
Chlorine	105 (85–125)	25 (13–50)	130 (100 –1 60)	
Bromine	2.1 (0.5–4.4)	2.8 (1.8-4.2)	5 (3–7)	
lodine	0-0.1	0.3–0.8	0.3–0.9	

Table 1-6. WMO 2022

CESM1 vs CESM2: Chlorine

•Stratospheric chlorine remains equivalent between model versions •Top of model Cl_v increases by 2.5-3.0 % due to higher PGI in CESM2

- •CESM1 shows larger Cl_y in the LT, while CESM2 shows larger Cl_y in the UT •PGI is aprox. 2 times larger in CESM2
 - Minimum Cl_v values are observed in the TTL
- •HCl dominates Cl_y partitioning in the UT and controls washout and PGI.

•Reactive chlorine (Cl, ClO) are minor species

□ smaller impacts w.r.t. Br/I

CESM1 vs CESM2: Bromine

•Zonal distribution of VSL and Br_y depend on SSA distributions •Bromine-VSL emissions must be increased by 15% to reproduce VP

•CESM2 results in a less efficient transport from the MBL to the FT •Br, hotspots are observed in the NH surface (SSA-dehalogenation)

- •At 700 hPa CESM2 does not show hemispheric asymmetry
- •LT Br_v is lower in CESM2 on the global mean

• Total Br_v at the top of the model is aprox. 1 pptv smaller in CESM2

Bromine in CESM2: Sources and Partitioning

- •HBr and HOBr are the dominant Br_y species. •Reactive bromine (Br, BrO) is important in the UT □ larger ozone impact in the LMS compared to Cl
- •SSA-dehalogenation is the dominant source in the MBL (84%)
- Oceanic VSL^{Br} represent ~90% of the Br atoms source in the FT
 No anthropogenic VSL^{Br} sources are considered.
- •CH₃Br (LL) contribute more to FT Br_y and PGI than CH₂Br₂ and minor VSL

GLOBAL	Bromine Sources (Gg/yr)							
	Natural VSL			Long Lived (LL)		SSA		
(90°N-90°S)	CHBr ₃	CH ₂ Br ₂	Minor VSL	CH ₃ Br	Halons	Bry	Total Br	Perc
Photolysis	379	0.34	43.3	0.14	4.02	0	426.8	8.7
OH + O ¹ D	199	68.6	21.1	73.5	0	0	362.2	7.3
CI	0.17	0.19	0	0.83	0	0	1.19	0
SSA	0	0	0	0	0	4139	4139	84
Total Br	578.17	69.13	64.4	74.47	4.02	4139	4929.19	100
Percentage	11.7	1.4	1.3	1.5	0.1	84		
Percentage	73.2	8.7	8.2	9.4	0.5		1	
		000/						

Bromine in CESM2: Sinks

- Bromine washout based on NEU scheme is less efficient in CESM2 and results in a significantly larger PGI
 - We applied the FRA for BrONO₂ following original implementation for IONO₂ in CESM1

VSLS Best Estimate (ppt)	SGI	PGI ²	Total (SGI + PGI) ³	
Chlorine	105 (85–125)	25 (13–50)	130 (100–160)	Table 1-6
Bromine	2.1 (0.5–4.4)	2.8 (1.8-4.2)	5 (3–7)	WMO 2022
lodine	0-0.1	0.3–0.8	0.3–0.9	

CESM1 vs CESM2: lodine

- •HI is a minor species. HOI dominates I_y partitioning.
 •Reactive iodine (I, IO) largest of all halogens

 □ dominant O₃ impact
- Stratospheric I_y injection is 0.70 pptv (all gas-phase). • Particulate iodine formation is not included in CESM2
- •Higher I_y values are observed at the surface •Oceanic HOI/I₂ (online) source reaches 2.1 Tg I yr⁻¹

Evaluating CESM2 configurations

Evaluating CESM2-SLH setup: Nudging vs. Free Running

Evaluating CESM2-SLH setup: Nudging vs. Free Running

Evaluating CESM2-SLH setup: Vertical Resolution

SD_32L vs. SD_56L for Bromine

Changes in reactive transport for different vertical resolutions was evaluated with a 1°x1° SD approach.

There are no significant differences between 32L and 56L neither in the troposphere nor in the stratosphere

Tropical peak at 30 hPa arises due to stratospheric stabilization

Evaluating CESM2-SLH setup: Vertical Resolution

SD_32L vs. SD_56L for Bromine

Changes in reactive transport for different vertical resolutions was evaluated with a 1°x1° SD approach.

There are no significant differences between 32L and 56L neither in the troposphere nor in the stratosphere

Tropical peak at 30 hPa arises due to stratospheric stabilization

SD_32L vs. SD_56L for Iodine

Iodine and chlorine variations due to changes in the vertical resolution are also negligible.

Differences at the top of the model appear because ic for 32L neglected halogen chemistry.

Evaluating CESM2-SLH setup: Spatial Resolution

pptv month -1

NDG_f19(2°x2.5°) vs. NDG_f09(1°x1°) for Iodine

Changes in spatial resolution significantly modifies iodine vertical profiles from the LT and upwards.

Stratospheric iodine injection is reduced aprox. by half for NDG f09, which affects UT and LMS ozone impacts

+	************************************	*********** ol (SAD_ICETROP and SAD_LIQTROP)
	[liq_fr_hoi]	HOI ->
	[ice_fr_hi] [ice_fr_hoi] [ice_fr_iono2] [ice_fr_brono2]	HI -> HOI -> IONO2 -> BRONO2 ->

The Free Regime Approximation (FRA) scheme is sensitive to the spatial resolution

Changes in spatial resolution significantly modifies iodine washout efficiency in the LT

Conclusions

- **1.** Short-Lived Halogen chemistry has been included into CESM2
 - Tropospheric and Stratospheric distributions of halogens are consistent with previous studies, although some minor differences remain.
 - Tropospheric abundance and stratospheric injection are sensitive to changes in the model setup, particularly increasing the spatial resolution to f09 (1°x1°) and using nudging (NDG) setup.
- 2. Importance of marinating support to low-resolution configurations for climate studies
 - Allow to perform more sensitivities when developing new mechanisms
 - Note of caution on SLH abundance when changing model resolution

CONTACT Rafael P. Fernandez <u>rpfernandez@mendoza-conicet.gob.ar</u> <u>rafapedro@gmail.com</u>

Alfonso Saiz-Lopez <u>a.saiz@csic.es</u>

Chlorine in CESM2: Sources and Partitioning

- •Acid-driven SSA-dehalogenation is the dominant source in the MBL (>80%).
- Photo-degradation of CH₃Cl (LL) controls the release of Cl_y in the FT, surpassing Cl atom source from all Anthro VSL^{Cl} together
 Note CH₃Cl are imposed as LBC and possess a natural contribution
- Anthro VSL^{CI} contribute to tropospheric Cl burden (~35%), SGI and PGI
 Natural VSL^{CI} are negligible

pptv month ⁻¹

	Clorine Sources (Gg/yr)								
GLOBAL	5	Anthropogenic VSL		Long Lived (LL)		SSA			
(90°N-90°S)	Nat VSL	CH ₂ Cl ₂	Minor VSL	CH ₃ CI	CFCs HCFCs	Cly	Total CI	Perc	
hotolysis	54.0	0.02	1.11	0	7.53	0	62.66	0.3	
DH + O ¹ D	11.60	590	758	2298	251	0	3908.6	16.5	
	0	1.83	3.46	23.6	0	0	28.89	0.1	
SA HAL	0	0	0	0	0	2285	2285	9.7	
SAACID	0	0	0	0	0	17318	17318	73.4	
otal Cl	65.6	591.85	762.57	2321.6	258.53	19603	23603,15	100	
Percentage	0.3	2.5	3.2	9.8	1.1	83.1			
Percentage	1.6	14.8	19.1	58	6.5]		