

Chemistry-Climate Working Group

Simone Tilmes -NCAR/ACOM Chemistry-Climate co-chair Rafael Fernandez – CONICET, UNCUYO, Chemistry-Climate co-chair Rebecca Buchholz - NCAR/ACOM Chemistry-Climate Liaison Francis Vitt – NCAR/ACOM Software Engineer

June 14, 2023

CAM-chem Development Highlights

- CAM7-chem Workhorse Model: 93L (80km) and 58L (40km) (ne30pg3)
- Development is in progress, working with AMWG to tune the model. Recent developments: MAM5, new chemistry updates, changes in physics etc.

CESM CAM-chem 32L development version fv09 vs ne30pg3 (CSLAM)

• Model performance with cam6 physics is being evaluated

CESM CAM-chem simpler Chemistry

• TS4 new reduced mechanism by Louisa

CESM CAM-chem MPAS

- Initial runs were performed and show good results by Mary, Francis and Ren
- **CESM CAM-chem and WACCM-MA CARMA**
 - Model branch is released and available for users
- **CESM CAM-chem with VSL halogen chemistry**
- Presentation by Rafa and Alfonso

80 km			
	Workhorse Model 93L		
	40 km		
	Low Top Model 58L		
	Low Top Model 32L is desired		

Additional Updates in the Pipeline for CAM/ CAM-chem development

- HEMCO Emission Component (Issue #560) -> in progress
- New photolysis scheme (TUV-x) -> in progress
- New dust emission scheme in CTSM -> in progress
- Marine Organic Aerosol Emissions (Issue #531) -> not yet started
- MEGAN3.1 code in CTSM (Issue #1323) -> not yet started
- Online soil NO emissions (CTSM issue #1952) -> not yet started
- Planned work with AMWG on a 32L vertical grid
- Very-Short-Lived Halogens implementation into CESM

CAM-chem TS4 simplified chemical mechanism

MOZART-TS4 - simplified, similar to MOZART-2 (Louisa Emmons)

• GFDL - AM4 uses something similar (Horowitz et al., 2019; doi:10.1029/2019MS002032)

Differences from TS1:

- Remove BIGENE, aromatics
- BIGALK only makes C3H7O2
- Isoprene & Terpene chemistry similar to MOZART-4
- Full stratospheric chemistry, except for F, COF2, COFCI
- Full sulfur chemistry (S, SO, SO3, etc.)
- Simplified SOA (could expand back to VBS-SOA)

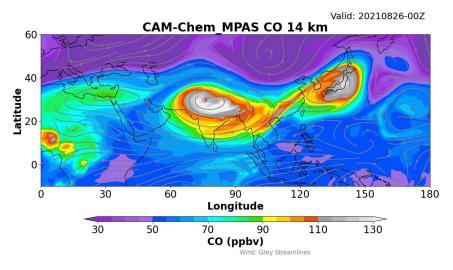
	TS4	TS1
# species (total)	141	231
# not-transported species	15	42
PE-hrs / sim-year	5400	7360

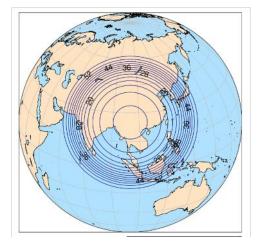
CAM-chem TS4 simplified chemical mechanism

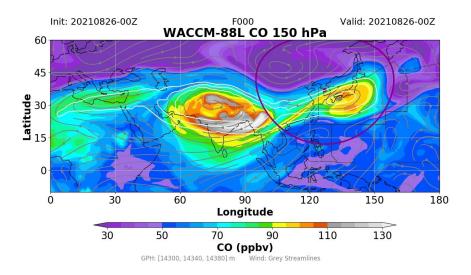
One year specified dynamics simulation 2010: very small TOA difference (0.05 W/m2)

	TS4	TS1
Ozone (Tg)	335	341
CO (Tg)	269	266
Methane (Tg)	4198	4195
POM (TgC)	0.61	0.65
SOA (TgC)	0.76	0.71
BC (TgC)	0.11	0.12
SO4 (TgS)	0.50	0.73

CESM CAM-chem MPAS: 60 - 3 km grid mesh

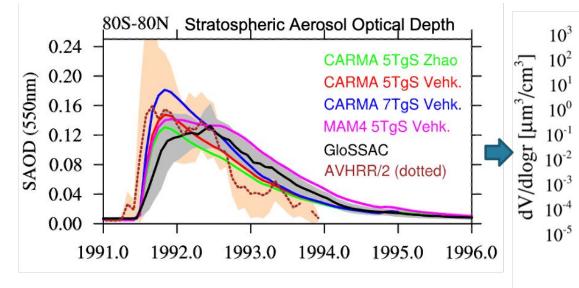

Asian Summer Monsoon dry run forecast =case study: 23.-28. August 2019

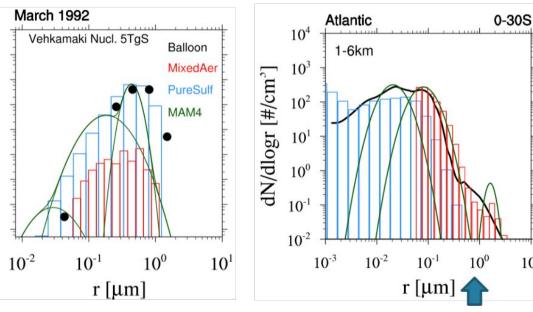

Troposphere-Stratosphere (TS1) chemistry (168 trace gases & aerosols)


5-day test run:

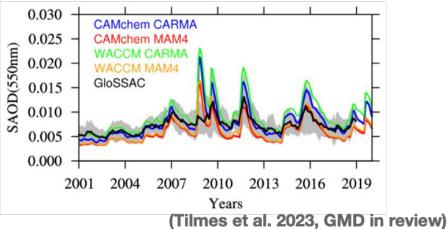
- Model Cost: 2021401.65
 pe-hrs/simulated_year
- Model Throughput: 0.09 simulated_years/day
- total pes active : 7200
- mpi tasks per node : 36

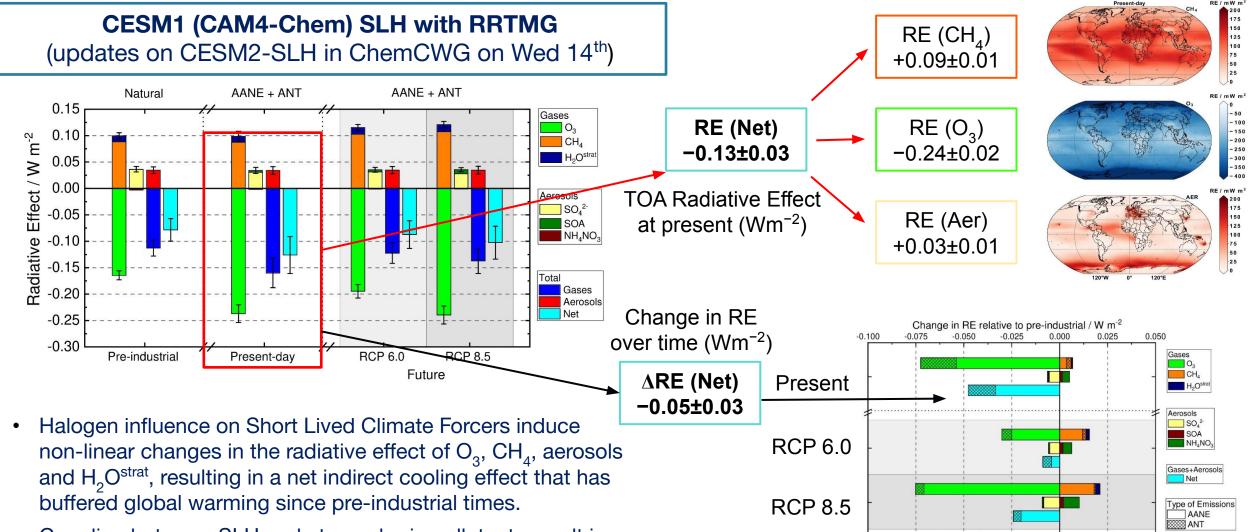
(200 cheyenne large memory nodes)





Atmospheric Chemistry Observations and Modeling Laboratory


CESM2 CARMA Sectional Aerosol Model Implementation


WACCM-MA and CAMchem CARMA vs MAM4

- Both CARMA and MAM4 reproduce stratospheric aerosol properties quite well over the Mt Pinatubo period and for smaller volcanoes and background conditions
- CARMA shows an improved representation of the aerosol volume size distribution compared to observations over the Mt Pinatubo period (March 1992, in 20km)
- -> can make an important difference for Geoengineering studies
- CARMA better captures size distribution in the troposphere, e.g., Atlantic 1-6km 2016-2018 in comparison to ATom aircraft observations

 10^{1}

Natural short-lived halogens (SLH) exert an indirect cooling effect on climate

-0.100

-0.075

-0.050

-0.025

0.000

0.025

(Saiz-Lopez et al., Nature, 2023)

0.050

 Coupling between SLH and atmospheric pollutants result in the Anthropogenic Amplification of Natural Emissions (AANE).

NCAR

UCAR

Atmospheric Chemistry Observations and Modeling Laboratory

Discussion: Question and Needs from the Community

What are your needs regarding CAM-chem capabilities /developments with regard to:

- Chemistry complexity
- Aerosol developments
- Model resolutions and vertical extent

NCAR