

2023 CESM Workshop - CVCWG

Origins of Uncertainty in Projections of Summer North Pacific High

Kezhou Lu¹, Jie He¹, and Isla Simpson²

¹ School of Earth and Atmospheric Sciences, Georgia Institute of Technology ² Climate and Global Dynamics Laboratory, National Center for Atmospheric Research

Introduction What is summer NPSH?

North Pacific Subtropical High (NPSH)

Mid-latitude cell yester tiles HiGH Hadley cell Hadley cell Southeasterity Trades Hidd-latitude cell O' Hidd-latitude cell O' Dear cell

Polar cell

Boreal summer Sea level pressure (Pa)

Credit: ESRL

Credit: Wikipedia

Introduction What maintains summer NPSH?

(Wills, 2019, Wang et al, 2017) 3

Introduction Why do we care about summer NPSH?

• The variability in summer NPSH has a significant impact on the monsoon and typhoon over the East Asia

Debris in Tacloban, Philippines after Typhoon Haiyan

The western North Pacific Subtropical High (WNPSH) might extend further westward in the future

Credit: Xiaolong Chen

Potentially more typhoons and floods

Introduction Why do we care about summer NPSH?

• Future changes of the NPSH could intensify the drought over California

Credit: https://www.drought.gov/states/california

5

Results Model uncertainty in summer NPSH projection

Response of summer NPSH in coupled climate models under $abrupt4 \times CO_2$ scenario

Multi-model mean (MMM) changes in NPSH from 46 CMIP5 and CMIP6 models

Deviation from the multi-model mean

Results

Model uncertainty in summer NPSH projection

Shading: MMM (top) and inte-rmodel std (bottom) of 850-hPa eddy streamfunction

Contours: climatological mean (intervals: $10^6 \text{ m}^2/\text{s}^2$)

- The multi-model mean changes of NPSH under high CO₂ scenario from models are comparable to its inter-model standard deviation
- Four regions of high inter-model variability are identified: the western Pacific, the eastern Pacific and Gulf of Mexico, the North Pacific and the central North Pacific

Methods Model uncertainty in summer NPSH projection

How to evaluate the spatial structure of model uncertainty?

s: number of grid points

Methods Model uncertainty in summer NPSH projection

How to evaluate the spatial structure of model uncertainty?

First two leading IEOFs of $\triangle NPSH$ from abrupt4xCO₂:

MethodsModel uncertainty in summer NPSH projection

ResultsNon-SST related inter-model spread of Δ NPSH

Statistical relationship with tropical Δ precipitation inter-model spread

IEOF2 of $\triangle NPSH$ from abrupt4xCO₂:

IEOF1 of $\triangle NPSH$ from AMIP4xCO₂+Future:

IEOF1 of $\Delta Prceip$ from abrupt4xCO₂:

IEOF1 of $\triangle Precip$ from AMIP4xCO₂+Future:

-5.0 -3.0 -1.5 -1.0 -0.5 -0.2 -0.1 -0.05 0.05 0.1 0.2 0.5 1.0 1.5 3.0 5.0 δ Δ Pr [mm/day]

Contours: $\Delta Precip$ regressed onto inter-model PC of $\Delta NPSH$

Non-SST related diabatic heating experiment

IEOF1 of $\triangle Precip$ from AMIP4xCO₂+Future:

- Prescribe the leading inter-model uncertainty mode of tropical diabatic heating inter-model spread from AMIP output to CAM5
- An "iterative approach" is used when prescribe diabatic heating to account for the moist processes in CAM5
- Each iteration contains 5 ensembles to minimize the influence of internal variability

Results Non-SST related inter-model spread of ΔNPSH

Non-SST related diabatic heating inter-model spread drives IEOF2 of $\Delta NPSH$

Low-level circulation response

IEOF2 of $\triangle NPSH$ from abrupt4xCO₂:

- The circulation anomaly maxima over the WP and the EPG are consistent with statistical results
- High inter-model ΔNPSH variance at the WP results from the model of tropical precipitation inter-model spread that is unrelated to SST

IEOF1 of $\triangle NPSH$ from AMIP4xCO₂+Future:

Results Non-SST related inter-model spread of ΔNPSH

Non-SST related diabatic heating inter-model spread drives IEOF2 of $\Delta NPSH$

IEOF1 of $\Delta Precip$ from AMIP4xCO₂+Future:

Matsuno-Gill response (Gill, 1998)

• The dry-north-wet-south diabatic heating in the northeastern Indian and western Pacific induces a Matsuno-Gill type response

Results Non-SST related inter-model spread of Δ NPSH

Non-SST related diabatic heating drives IEOF2 of $\Delta NPSH$

Low-level circulation response e. CAM5: low-level response to non-SST related dibatic heating spread 40°N 20°N 150°W 30°E 90°E 150°E -1200000-600000600000 1200000 -18000001800000 $\delta \Delta \Psi_{850} [m^2/s]$ Upper-level circulation response a. CAM5: upper-level response to non-SST related dibatic heating spread 40°1 20°N 30°E 90°E 150°E 150°W -1800000-900000900000 -27000001800000 2700000

 $\delta \Delta \Psi_{300} [m^2/s]$

- The baroclinic structure of circulation locates at around 15°N-20°N
- The barotropic structure locates at around 45°N-55°N
- The tropical diabatic heating affect the North Pacific and North American circulation via Rossby wave train

Purple arrows: Takaya-Nakamura Flux (identify wave source and sink)

$$W = \frac{1}{2|\bar{U}|} \begin{bmatrix} \bar{u}(\psi_{x}^{\prime 2} - \psi'\psi_{xx}^{\prime}) + \bar{v}(\psi_{x}^{\prime}\psi_{y}^{\prime} - \psi'\psi_{xy}^{\prime}) \\ \bar{u}(\psi_{x}^{\prime}\psi_{y}^{\prime} - \psi'\psi_{xy}^{\prime}) + \bar{v}(\psi_{y}^{\prime 2} - \psi'\psi_{yy}^{\prime}) \end{bmatrix}$$
(Takara and Nakamura, 1997) 15

Results Model uncertainty in summer NPSH projection

What cause inter-model uncertainty of $\triangle NPSH$?

SST related inter-model spread of **ANPSH**

Results

Methods SST related inter-model spread of ΔNPSH

SST related diabatic heating experiments

Step 1: Prescribe the leading inter-model uncertainty mode of tropical \triangle **SST** to CAM5

 $\Delta Precip$ inter-model spread associated with IEOF1 $\Delta NPSH$ from coupled abrupt4xCO₂:

-5.0 -3.0 -1.5 -1.0 -0.5 -0.2 -0.1 -0.05 0.05 0.1 0.2 0.5 1.0 1.5 3.0 5.0 δ ΔPr [mm/day]

MethodsSST related inter-model spread of ΔNPSH

SST related diabatic heating experiments

Step 1: Prescribe the leading inter-model uncertainty mode of tropical \triangle **SST** to CAM5

Diabatic heating anomalies

Step 2: Prescribe the diabatic heating generated in step 1 to CAM5

Results SST related inter-model spread of ΔNPSH

The SST-induced diabatic heating inter-model spread drives IEOF1 of $\Delta NPSH$

• The Matsuno-Gill circulation response shifts eastward

Upper-level circulation response

SST related inter-model spread of Δ NPSH

2700000

-1800000

IEOF1 of $\triangle NPSH$ from abrupt4xCO₂:

IEOF1 of $\triangle NPSH$ from abrupt4xCO₂:

Results

- The circulation anomaly maxima over the NP and the NCP regions are consistent with statistical results
- The upper troposphere wave propagation is similar to the experiment forced with non-SST related TDH inter-model spread but shifts to the east
- The Matsuno-Gill circulation response shifts eastward

b. Upper-level circulation response to SST related dibatic heating bias ave by the second se

Upper-level circulation response

 δ Δ Ψ₃₀₀ [m^2/s]

900000

1800000

2700000

Low-level circulation response

-900000

Results Model uncertainty in summer NPSH projection

What cause inter-model uncertainty of $\triangle NPSH$?

Due to **SST-driven** inter-model spread of changes in tropical precipitation Due to **non-SST** related inter-model spread of changes in tropical precipitation

- State-of-the-art models show large diversity in the future projection of summer NPSH
- The source of this uncertainty originates from the tropics
- Model spread in tropical SST affects the NPSH through the production of anomalous precipitation
- Model spread in tropical precipitation that is independent of SST also contributes to the uncertainty of the NPSH projection

2023 Graduate EAS Symposium

Q&A

Contact me: kezhou.lu@eas.gatech.edu

Extra Plots Robustness of inter-model analysis

Extra Plots Relationship with extra-tropics

Figure 4. Relationship between inter-model uncertainty of Δ NPSH and extra-tropical land Δ TS and the North Pacific Δ SST. **a** Inter-model uncertainty of Δ TS by composite analysis (shadings; K) and TS anomalies associated with inter-model PC2 of $\Delta\Psi_{850}$ (contours; K). **b** Similar to **a** but with IEOF1 of land TS and associated land TS anomalies regressed onto PC1 of $\Delta\Psi_{850}$ under the AMIP4x CO_2 +Future scenario. Regions with statistically significant correlations are marked with stipples in **a** and **b**. **c** Response of land TS (shadings; K), net surface shortwave radiation (thick green contours; W/m^2), and low cloud fraction (blue and red scatters where blue indicates a significant low cloud reduction and vice versa) to SST independent inter-model tropical diabatic heating spread in CAM5. **d** Response of eddy streamfunction at 850 hPa(shadings; m^2/s) and horizontal winds (vectors; m/s) to inter-model spread of Δ SST over North Pacific.

Extra Plots Stationary wave model results

Extra Plots CMIP models with AMIP outputs

Extra Plots Deviation form the multi-model mean

Extra Plots Deviation form the multi-model mean

CMIP6-abrupt4xCO2

Extra Plots Cause of SST inter-model spread

Models simulate less weakening of upwelling velocity and less shoaling of thermocline also project a stronger NPSH compared to the multimodel mean

Table S1: Summary of CMIP5 and CMIP6 simulations (Models with AMIP

output available are highlighted)

	CMIP5				CMIP6			
No.	Model Name	Resolution (atmosphere)	Resolution (ocean)	No.	Model Name	Resolution (atmosphere)	Resolution (ocean)	
1	ACCESS1-0	$1.875^\circ EW \times 1.25^\circ NS,$ 38 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 50 levels	25	ACCESS-CM2	N96, 85 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 50 levels	
2	ACCESS1-3	$1.875^\circ EW \times 1.25^\circ NS,$ 38 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 50 levels	26	ACCESS-	N96, 85 levels	Tripolar $1^\circ EW \times 1^\circ NS, 50$ levels	
3	bcc-csm1-1	T42, 26 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 40 levels		ESM1-5			
4	bcc-csm1-1-m	T106, 26 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 40 levels	27	AWI-CM-1-1-	T127, 95 levels	Unstructured grid in the horizontal,	
5	CCSM4	$0.9^{\circ}EW \times 1.25^{\circ}NS,$ 30 levels	Tripolar gx1v6, 60 levels		MR		46 levels	
6	CNRM-CM5-2	TL127, 31 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 42 levels	28	BCC-ESM1	T42, 26 levels	$1^{\circ}EW \times 0.8^{\circ}NS,40$ levels	
7	CNRM-CM5	TL127, 31 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 42 levels	29	CAMS-CSM1-0	T106, 31 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 50 levels	
8	CSIRO-Mk3-6-0	T63, 18 levels	$1.875^\circ EW \times 0.9375^\circ NS,$ 31 levels	30	CanESM5	T63, 49 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 41 levels	
9	GFDL-ESM2M	M45, 24 levels $(1^{\circ}EW \times 1^{\circ}NS,$	Tripolar 360x200, 50 levels	31	CESM2	$1.25^\circ EW \times 0.9^\circ NS,$ 32 levels	Tripolar gx1v7, 60 levels	
	(GFDL-CM4)	33 levels)		32	CESM2-FV2	$2.5^\circ EW \times 1.9^\circ NS,32$ levels	Tripolar gx1v7, 60 levels	
10	GISS-E2-H	$2.5^{\circ}EW \times 2^{\circ}NS,40$ levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 26 levels	33	CESM2-	$1.25^\circ EW \times 0.9^\circ NS,$ 70 levels	Tripolar gx1v7, 60 levels	
11	GISS-E2-R	$2.5^\circ EW \times 2^\circ NS,40$ levels	$1.25^\circ EW \times 1^\circ NS,$ 32 levels		WACCM			
12	HadGESM2-ES	N96, 38 levels	$1^\circ EW \times 1^\circ NS,40$ levels	34	EC-Earth3-	TL255, 91 levels	Tripolar $1^\circ EW \times 1^\circ NS,$ 75 levels	
	(HadGEM2-A)				AerChem			
13	inmcm4	$2^{\circ}EW \times 1.5^{\circ}NS,21$ levels	$1^{\circ}EW \times 0.5^{\circ}NS,40$ levels	35	EC-Earth3-Veg	TL255, 91 levels	Tripolar $1^\circ EW \times 1^\circ NS,$ 75 levels	
14	IPSL-CM5A-	$3.85^\circ EW \times 1.875^\circ NS,$ 39 levels	$2^{\circ}EW\times2^{\circ}NS,31$ levels	36	FGOALS-f3-L	c96, 32 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 30 levels	
	LR			37	GISS-E2-1-G	$2.5^\circ EW \times 2^\circ NS,40$ levels	$1^\circ EW \times 1^\circ NS,32$ levels	
15	IPSL-CM5A-	$2.5^\circ EW \times 1.25^\circ NS,$ 39 levels	$2^{\circ}EW \times 2^{\circ}NS,31$ levels	38	GISS-E2-1-H	$2.5^\circ EW \times 2^\circ NS,40$ levels	$1^{\circ}EW \times 1^{\circ}NS,$ 32 levels	
	MR			39	GISS-E2-2-G	$2.5^\circ EW \times 2^\circ NS,40$ levels	$1^{\circ}EW \times 1^{\circ}NS$, 32 levels	
16	IPSL-CM5B-LR	$3.85^\circ EW \times 1.875^\circ NS,$ 39 levels	$2^{\circ}EW \times 2^{\circ}NS,31$ levels	40	IITM-ESM	T62, 64 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 50 levels	
17	MIROC5	T85, 40 levels	$1^{\circ}EW \times 1^{\circ}NS$, 50 levels	41	KACE-1-0-G	N96, 85 levels	Tripolar $1^{\circ}EW \times 1^{\circ}NS$, 50 levels	
18	MIROC-ESM	T85, 40 levels	$1.4^\circ EW \times 1^\circ NS,44$ levels	42	MIROC6	T85, 81 levels	Tripolar $1^\circ EW \times 1^\circ NS,63$ levels	
19	MPI-ESM-LR	T63, 47 levels	GR15, 40 levels	43	MRI-ESM2-0	TL195, 80 levels	$1^{\circ}EW \times 0.5^{\circ}NS,61$ levels	
20	MPI-ESM-MR	T63. 95 levels	TP04. 40 levels	44	NorCPM1	$2.5^\circ EW \times 1.9^\circ NS,26$ levels	$1^{\circ}EW \times 1^{\circ}NS$, 53 levels	
21	MPI-ESM-P	T63, 47 levels	GR15, 40 levels	45	NorESM2-MM	$1^\circ EW \times 1^\circ NS,$ 32 levels	$1^\circ EW \times 1^\circ NS,70$ levels	
22	MRI-CGCM3	TL159, 48 levels	$1^{\circ}EW \times 0.5^{\circ}NS,51$ levels	46	TaiESM1	$1.25^\circ EW \times 0.9^\circ NS,$ 30 levels	Triploar gx1v6, 60 levels	
23	NorESM1-M	f19, 26 levels	Tripolar gx1v6, 53 levels					
24	NorESM1-ME	TL159, 48 levels	$1^{\circ}EW \times 0.5^{\circ}NS$, 51 levels					