

- 1) Develop methods to represent large tabular icebergs and their breakup within Earth system models
- 2) How does breakup affect where icebergs drift and deposit meltwater into the ocean?
- 3) What caused the Dec 2020 breakup of iceberg A68a?

Icebergs influence climate

- Icebergs comprise about half of the freshwater flux from ice sheets to the ocean
- Their meltwater can affect:
 - Sea-ice formation
 - Ocean circulation
 - Biological primary productivity

Icebergs in GFDL climate models are modeled as Lagrangian point particles

Bigg, 2016

Iceberg size dictates where icebergs drift and deposit freshwater into the ocean

- Large bergs drift farther
- Giant tabular icebergs with areas > 100 km² represent ~90% of Antarctic iceberg volume.

Modeled: GFDL default (berg areas 0.5-3.5 km²)

Modeled: large iceberg size distribution (berg areas 5 –1000 km²):

(bergs with areas $> 5 \text{ km}^2$)

Can we represent iceberg breakup in climate models?

Study 2: Rift calving (and a new modeling framework) MODIS 06 Mar 2004 (b) A38A MODIS 19 Mar 2004 A38A-Image: Scambos et al. (2005) 75 km by 117.5 kn

Study 1: The footloose mechanism

How will parameterizing the footloose mechanism change the modeled distribution of large icebergs and their meltwater?

Parameterizing the footloose mechanism

We track foot size with empirical models for erosion and melt

Elastic beam theory determines:

- We will vary ice stiffness and yield stress, which affects l_f and l_c
- Overall footloose decay rate is determined by l_c / l_f

60 year simulation of large tabular icebergs with footloose

- Coupled with ocean (MOM6) and sea-ice (SIS2)
- JRA-55 for runoff and atmospheric forcing
- Max iceberg size is 1000 km²

Average area (km²) of large icebergs (areas 200-1000 km²) that drift within 100 km of a grid point

With the footloose parameterization, we can reasonably simulate the drift and decay of icebergs with areas $\leq 1000 \text{ km}^2$

200

km²

1000

- 900

- 800

Average melt flux anomalies compared to original small-berg simulation

Huth et al (2022). Parameterizing tabular-iceberg decay in an ocean model. JAMES.

Study 2: Rift calving

(and a new iceberg modeling framework)

Goals

- Develop a new iceberg component that represents:
 - The true shape and size of all icebergs, including those with areas > 1000 km²
 - Internal iceberg stress
- Can we simulate observed drift and breakup?
- What caused the rift-calving of iceberg A68a?

The Improved Kinematic Iceberg Dynamics (iKID) module

iKID captures:

- The true iceberg size and shape
- External forcings that vary across the iceberg body
- Internal stresses
- Grounding, rotation, contact between bergs, and "rift-calving"

iKID: A multiple time stepping (MTS) scheme increases computational efficiency

iKID ocean grid

A68a simulation:

1 "long" step ("slow" forces) = 30 min

90 "short" sub-steps ("fast" forces) = 20 s

MTS scheme

1) Long step: external forces

iKID multiple time stepping scheme: long steps

MTS scheme

50 km

iKID multiple time stepping scheme: short steps

MTS scheme

1) Long step: external forces

the same conglomerate

Normal and shear force

Torque from relative rotation

Grounding: $ec{F}_{
m G}=c_{
m g}Aec{u}$

Fracture criterion:

Break bonds when max tensile stress > tensile strength

Interactive forces between particles in

Test case:

Can we simulate the December 2020 drift and breakup of Iceberg A68a?

What caused the second breakup event?

Finger was fully intact between breakups

-0

2nd breakup occurs when finger overlaps stronger currents

20 km

Hypothesis: Second rift calving was caused by ocean-current shear

- This breakup mechanism has not been reported previously
- Can be tested with iKID

iKID A68a simulation

Data sources

- ESR/OSCAR surface ocean current velocities
- SSALTO/DUACS sea surface heights
- NCEP/NCAR 10 m reanalysis vector winds

Tuning

- Each particle is 200 m thick with a 1.5 km radius
- Tensile bond strength: 18 kPa
- MacAyeal et al, 2008 estimated of order 10 kPa

MTS scheme clock-time

- \sim 8 s to simulate each day of iceberg evolution
- Sufficient for climate modeling
- Further speedup with coarser particle resolution and optimization

Study 2 Summary

- Ocean-current shear may trigger some iceberg breakups
 - Longer bergs may be more susceptible
- The iKID bonded-particle iceberg model
 - Represents true iceberg size, shape, and stress
 - Captures rotation, rift-calving, grounding, etc.
- However, iKID is currently only ready for specialized applications
 - Point-particles + footloose is ready for generalized use within climate models

Huth et al., 2022. Ocean currents break up a tabular iceberg. Science Advances.

Next steps

Develop capabilities to:

- Calve iKID icebergs from ice shelves within Earth system models
- Displace ocean and sea-ice
- Atmospheric coupling + hydrofracture

Related work:

Huth et al. (2023) "Modeling the Processes that Control Ice-Shelf Rift Paths Using Damage Mechanics". In revision.

d

0.3

0.35

Dec 20

-6

0.05

0.1

0.15

0.2

ocean current speed (m/s)

0.25

0.0