New features and enhancements in CESM/CLM snow albedo scheme:

Towards more physical and realistic representations of snow-radiation-aerosol interactions

Cenlin He (NCAR)

Mark Flanner (UMich), David Lawrence (NCAR), Yu Gu (UCLA)

Funding source: NOAA's Climate Process Teams (CP)

Model physics: snow-radiation-aerosol interaction and feedback

Workflow for CTSM/CLM-SNICAR

Orange box: new elements added in this study

Blue box: default CLM-SNICAR elements

CTSM/CLM-SNICAR new features and enhancement lists

	SNCIAR New features or enhancements	New SNICAR namelist controls (bold: new default)	Original SNICAR
1	Updated ice optical properties from Flanner et al. (2021), with multiple types for ice refractive indices	snicar_snw_optics = 1 (Warren84), 2 (Warren08), 3 (Picard16)	Warren84
2	Updated aerosol optical properties from Flanner et al. (2021) with multiple dust types & new BC and OC optics	snicar_dust_optics = 1 (Sahara median) , 2 (Colorado), 3 (Greenland)	Dust: Sahara old (Zender2006) BC/OC: Flanner2007
3	Updated downward solar spectra from Flanner et al. (2021) for multiple condition types	snicar_solarspec = 1 (mid-latitude winter) , 2 (mid-latitude summer), 3 (sub-Arctic winter), 4 (sub-Arctic summer), 5 (Greenland summer), 6 (high mountain summer)	Old mid-latitude winter
4	More accurate radiative transfer solver (adding-doubling) from Dang et al. (2019)	snicar_rt_solver = 1 (Toon1989), 2 (Adding-Doubling)	Toon1989 two-stream
5	Nonspherical snow grain scheme from He et al. (2017)	snicar_snw_shape = 1 (sphere), 2 (spheroid), 3 (hexagonal) , 4 (snowflake)	sphere
6	BC-snow internal mixing scheme from He et al. (2017)	snicar_snobc_intmix = true, false	BC-snow external mixing
7	Dust-snow internal mixing scheme from He et al. (2019)	snicar_snodst_intmix = true, false	Dust-snow external mixing
8	Hyperspectral (480-band, 10-nm spectral res) capability with all the above features	snicar_numrad_snw = 5 , 480 fsnowoptics, fsnowoptics480,	5-band fsnowoptics
9	Add new namelist controls for aerosol in snow	snicar_use_aerosol = true , false DO_SNO_OC = true, false	No control on use_aerosol hard-coded DO_SNO_OC

New SNICAR input datasets: snicar_optics_5bnd_c013122.nc, snicar_optics_480bnd_c012422.nc

Global CTSM/CLM offline simulation setup

- Compset: I2000CIm51Sp (2000_DATM%GSWP3v1_CLM50%SP_SICE_SOCN_MOSART_SGLC_SWAV)
- **Resolution**: ~ 1 deg (f09_g17)
- Atmospheric forcing: GSWA v3
- Simulation period: 2000-2005 for spin-up, 2006-2010 for analysis

Surface albedo evaluation: Reduced negative bias in mid-latitudes but slightly increased positive NIR albedo bias in polar regions

Snow cover evaluation: Reduced negative bias in mid-latitudes and negligible impacts in polar regions

ERA-5 SWE (DJF) SWE bias (default CLM) Difference (New – Old SNICAR) 90 90 50 90 40 40 350 30 30 300 20 20 30 30 30 250 10 10 200 0 0 -10 -10 150 .30 -30 -30 -20 -20 100 -30 -30 -60 -60 -60 50 -40 -40 -50 .90 180 -120 60 120 120 180 120 180 -180 -180 -60 -120 60 -180 -120 60 ERA-5 SWE (MAM) Difference (New – Old SNICAR) SWE bias (default CLM) 90 40 40 350 30 30 300 20 20 30 30 30 250 10 10 200 -10 -10 150 -30 -30 -20 -20 100 -30 -30 -60 -60 50 -40 -40 -50

120

180

-180

-120

60

180

-180

120

120

60

-120

-60

-180

SWE evaluation: Reduced negative bias in Greenland coasts & some mid-latitude mountains in spring

He et al., 2023 JAMES in review

180

120

60

Snow depth evaluation: Reduced negative bias in polar regions

-180

-120

60 120 180 He et al., 2023 JAMES in review

-60

2-m temperature evaluation: Reduced positive bias in mid-latitude mountains & polar regions

Sensitivities to some key new features

Effect of more accurate radiative transfer solver (Adding-doubling)

-90

-180

-120

-60

0

60

60

-120

-60

0

120

180

He et al., 2023 JAMES in review

-0.025

180

120

Effect of nonspherical snow grain shape

Higher snow albedo for nonspherical snow

Annual all-sky differences (Snowflake - Sphere)

Effect of BC/dust-snow internal mixing (using BC as an example)

Effects of downward solar spectrum

High mountain spec – Mid-latitude summer

Thank you!

If you are interested in our work, please email me <u>cenlinhe@ucar.edu</u>

Effect of updated aerosol optics

Aerosol-induced annual snow-covered ground albedo reduction difference (Flanner21 optics – Flanner07 optics)

Effects of multiple dust types

Dust-induced annual snow-covered ground albedo reduction difference (Greenland dust – Colorado dust)

Dust-induced annual snow albedo radiative forcing difference (Greenland dust - Colorado dust)

Effect of 480-band hyperspectral calculation

Why do we need 480-band hyperspectral capability although it is much slower than 5-band?

- More accurate due to nonlinearity of radiative transfer and the way of averaging snow & aerosol optics to 5-bands before radiative transfer (Wang et al. 2022)
- Make noticeable differences in high-latitude regions and aerosol effects on snow albedo
- Benefit point-scale and regional process-level study and spectral snow albedo DA

Effects of updated ice optics

Visible snow albedo annual difference (Flanner21 optics – Flanner07 optics)

