Minor contribution of ablation area expansion to future Greenland Ice Sheet mass loss

Jeremy Trotereau, Miren Vizcaino, Raymond Sellevold, Sotiria Georgiou, Michele Petrini, Laura Muntjewerf, Sarah Bradley Kate Thayer-Calder, William Lipscomb, Department of Geoscience and Remote Sensing, Delft University of Technology, The Netherlands NCAR, USA

Greenland is losing mass: 0.7 mm SLR/yr

- Mass loss has accelerated due to accelerated runoff, primarily from SW
- Becoming a major contributor to GMSLR (3.7 mm/yr)
- Record melt in 2012
 & 2019

CESM2-CISM2 applied for SSP5-8.5 estimates

Projections Muntjewerf et al, GRL, 2020

Multi-century evolution under 1% 4xCO2

Mass loss in Gt/yr (360 Gt yr⁻¹ = 1 mm SLR yr⁻¹)

- In this scenario, 4xCO2 is reached at year 140
 in SSP5-8.5, at year 2100
- Large increase in mass loss rate & ablation area expansion ~year 120

Multi-century evolution under 1% 4xCO2

Mass loss in Gt/yr (360 Gt yr⁻¹= 1 mm SLR yr⁻¹)

- In this scenario, 4xCO2 is reached at year 140
 in SSP5-8.5, at year 2100
- Large increase in mass loss rate & ablation area expansion ~year 120
- Maximum mass loss rate at year 500 (8 mm SLR yr⁻¹)
- GrIS is lost in 1,700 years

What if we cap CO2 before large acceleration?

We branch a 3xCO2 simulation at year 111

SMB

500

-500

-1000

-1500

-2000

-2500

-3000

-3500

-15

-20

700

Mass loss in Gt/yr (360 Gt yr⁻¹= 1 mm SLR yr⁻¹)

- Mass loss acceleration around year 120 is avoided with capping at 3xCO2
- Mass loss rates by year 500 are reduced by almost 2/3
 - Non-linear effect of emission reduction

The ablation area expands much faster in 4xCO2

What explains the much reduced deglaciation rate?

Approach: mass & energy fluxes & AA expansion

SMB=snowfall-melt+refreezing-sublimation

Ablation (z) ?

Evolution of SMB components

GgGt /yGt/yr	SMB	Snowfall	Snow melt	Ice melt	Refreezing	Sublim.
Both, 0-100	294	748	-405	-299	338	-88
3xCO2, 400-500						
4xCO2, 400-500						
Diff, 400-500						

Evolution of SMB components

- Snowfall decreases with time
- Refreezing increases first, without exceding snowfall rate
- Relatively similar snow melt evolution

	SMB	Snowfall	Snow melt	Ice melt	Refreezing	Sublim.
Both, 0-100	405	748	-405	-299	338	-88
3xCO2, 400-500	-1020	581	-760	-1523	530	-75
4xCO2, 400-500	-2877	560	-837	-3054	432	-62

Evolution of SMB components

 Largest contributor to large mass loss is bare ice melt

	SMB	Snowfall	Snow melt	Ice melt	Refreezing	Sublim.
Both, 0-100	405	748	-405	-299	338	-88
3xCO2, 400-500	-1020	581	-760	-1523	530	-75
4xCO2, 400-500	-2877	560	-837	-3054	432	-62
Diff, 400-500	-1857	-21	-77	-1531	-102	-13

Evolution of melt energy contributors

W/m ²	Melt	SWnet	LWnet	sensible	latent
Both, 0-100	22	68	-45	6	-7
3xCO2, 400-500	60	93	-42	12	-3
4xCO2, 400-500	116	109	-34	30	10
Diff, 400-500	56	16	8	18	13

- All fluxes increase in both simulations, with non-linear increases in solar, sensible and latent
- Largest contributor to additional melt energy in 4xCO2 is sensible heat flux
- Followed by net solar (albedo feedback on melt)

Let's examine ablation = f(z)

Comparison of historical CESM2-CISM2 ablation gradient with IMAU measurements along K-transect (2001-2013)

CESM2-CISM2 reproduces
 observed SMB gradient over
 ablation area

Mass loss per elevation 480-500, whole ice sheet

- Linear relationship between ablation rate and elevation
- Larger gradient in 4xCO2
 - Melt is much larger in all elevations in 4xCO2 (larger ablation-elevation gradient), *particularly at low elevations*

AASMB= ablation area SMB

Time evolution of ablation gradient

- In 4xCO2, ablation gradient increases from year 120
- In 4xCO2, it is close to 3 m yr⁻¹ km⁻¹ by year 500
- We need to weight these ablation rates with area per elevation

Cumulative GrIS area distribution per elevation

Greenland ice sheet hypsometry

- For the whole 3xCO2, and 4xCO2 until 500, the elevation-area distribution remains constant
- Quasi-parabolic profile of an ice sheet: less area at low elevations

Area distribution per elevation

- Larger areal weight of elevations above 1500 m
- By year 500, ELA is above 1500 m in both simulations

Mass loss per elevation 480-500 [Gt/yr]

- Largest increases around 1000 m and 1500 m
- Areas below 700 m do not contribute much to mass loss due to relative low area weight
- Areas above 2000 m do not contribute much due to low melt rates
- 23% of additional mass loss in 4xCO2 from elevations above the 3xCO2 ELA_{GrIS}

Conclusions

- ONE: Actionable science: mass loss acceleration is avoided by capping at 3xCO2 (versus 4xCO₂): emission reduction is highly effective to avoid worst impacts
- **TWO:** Expansion of ablation area at higher elevations has a relatively minor effect on total mass loss
- Largest contribution from enhanced ablation at "baseline" ablation area
- **THREE:** Developed framework to relate ice sheet mass loss and elevation

3xCO2 4xCO2 3500 3000 2500 E 2000 Elevation 1500 _200 BMB 1000 -250 500 -300 200 400 600 800 200 400 600 800 0 Time [yr] Time [vr]

Evolution of mass loss per elevation bin [Gt/yr]

Application of framework to refreezing

3xCO2 480-500

Additional slides

Evaluation of radiation fluxes along K-transect

Comparison of radiation fluxes

Albedo feedback on melt: maps of net SW

