Did the West Antarctic Ice Sheet Collapse during the Last Interglacial? Joseph Schnaubelt¹, Clay Tabor¹, Austin Carter², Sarah Aarons², Aidan Starr³

¹Department of Earth Science, University of Connecticut ²Scripps Institution of Oceanography, University of California, San Diego ³Department of Marine and Coastal Sciences, Rutgers University

The Last Interglacial (LIG)

The Last Interglacial (LIG)

- Sea level 1.2-5.3 m higher than preindustrial (Dyer et al., 2021)
- Requires contributions from both ice sheets
- Proxy signatures allow for possibility of West Antarctic Ice Sheet Collapse

The Last Interglacial (LIG)

- Sea level 1.2-5.3 m higher than preindustrial (Dyer et al., 2021)
- Requires contributions from both ice sheets
- Proxy signatures allow for possibility of West Antarctic Ice Sheet Collapse
 - Water isotopes
 - Mineral dust
 - Ocean sediments

LIG Max GMSL

The Last Interglacial (LIG)

- Sea level 1.2-5.3 m higher than preindustrial (Dyer et al., 2021)
- Requires contributions from both ice sheets
- Proxy signatures allow for possibility of West Antarctic Ice Sheet Collapse
 - Water isotopes
 - Mineral dust
 - Ocean sediments

Motivation: Understand West Antarctic Ice Sheet collapse during the LIG

Dyer et al., 2021

Methods

- Water Isotope enabled Community Earth System Model (iCESM) (~2° horizontal resolution land/atmosphere) (Brady et al., 2019)
- PMIP4 boundary conditions (Otto-Bliesner et al., 2021)
 - 127ka solar configuration
 - GHGs: CO₂: 275 ppm, CH₄: 685 ppb, NO₂: 255 ppb
- 3 different West Antarctic Ice Sheet (WAIS) topographies

A tale of three proxies

Water Isotopes
Mineral Dust
Ocean Sediments

Ice core δ^{18} O signal

- δ^{18} O signal allow for possibility of West Antarctic Ice Sheet Collapse
- Glacial/Interglacial Plateaus in Holocene
- Anomalous peak in LIG

Modeled δ^{18} O signal

Modeled δ^{18} O signal

Masson Delmotte et al., 2016

‰

Masson Delmotte et al., 2016

Why does $\delta^{18}\text{O}$ change so much?

 $\Delta \delta^{18} O_p$ annual average (LIG-PI) ΔTS (LIG-PI) an EDF Vostok EDC ΓD Taldige D -2 2 -20 -10-410 0 4 0 20 ‰ °C Lapse Rate

Higher temperature = enriched $\delta^{18}O$

Why does $\delta^{18}\text{O}$ change so much?

A tale of three proxies

•Water Isotopes •Mineral Dust

Ocean Sediments

Ice Core Dust

Ice Core Dust

Ice Core Dust

Carter et al., in prep

- Decrease in dust sourced from South America
- Increase in dust sourced locally
- Change in regional circulation

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 LIG with partially collapsed ice sheet

A tale of three proxies

Water Isotopes
Mineral Dust
Ocean Sediments

Antarctic Circumpolar Circulation

- Major zonal transport component of the Southern Ocean
- Largely driven by Westerly Winds and Buoyancy Forcing
- Major carbon sink

Ocean Sediment Cores

- Flow speed determined using Sortable Silt
 - 10-63 um range silt
 - Stronger near bottom flow = coarser silt
- Agulhas Plateau = Slower during LIG
- Drake Passage = Faster during LIG
- Antiphase behavior true for other Pleistocene Interglacials (BUT not all!)

What does the model say?

—'3

LIG has a faster ACC independent of ice sheet extent •

Starr et al., in review

140

man

150

300

250 (udd

200 8

(SV)

eshwater Flux 0.2

faster than Late Holocer

0 (s/w) NV

0.0

90

5

Dome Fuji AT (°C)

100

110

120

130

What does the model say?

- LIG has a faster ACC independent of ice sheet extent ٠
- Faster with a collapsed ice sheet ٠

150 Age (kyr) Starr et al., in review

ACC flow speed

140

130

Why does the ACC speed up in the first place?

• Not due to the westerly winds

Why does the ACC speed up in the first place?

- Not due to the westerly winds
- INSTEAD... due to buoyancy forcing
 Ocean heat uptake = warmer southern ocean
- Warmer ocean = sharper density gradient □ more geostrophic mass transport

$$V_g = -\frac{R}{\rho f} \int k \times \nabla_p T dp$$

Vertically integrated zonal velocity (LIG - PI)

 $V_g = -\frac{R}{\rho f} \int k \times \nabla_p T dp$

Why does the ACC speed up in the first place?

- Not due to the westerly winds
- INSTEAD... due to buoyancy forcing
 Ocean heat uptake = warmer southern ocean
- Warmer ocean = sharper density gradient □ more geostrophic mass transport

Conclusions

- WAIS collapse seems to match:
 - Water Isotopes
 - Mineral Dust pathways
 - Ocean Sediments
- Antarctic topography plays an important role in regional atmospheric and oceanic circulation

Conclusions

- WAIS collapse seems to match:
 - Water Isotopes
 - Mineral Dust pathways
 - Ocean Sediments
- Antarctic topography plays an important role in regional atmospheric and oceanic circulation

Looking Ahead

- Continue to spin up model + branch to higher resolution
 - Model may not be fully in equilibrium
 - Higher resolution can influence signals
 - Alter vegetation
- Freshwater flux experiments
- Study additional MIS 5e + MIS 6 time slices (120 ka, 127 ka, 135 ka, 140 ka)
- Passive dust tracers

Conclusions

- WAIS collapse seems to match:
 - Water Isotopes
 - Mineral Dust pathways
 - Ocean Sediments
- Antarctic topography plays an important role in regional atmospheric and oceanic circulation

Looking Ahead

- Continue to spin up model + branch to higher resolution
 - Model may not be fully in equilibrium
 - Higher resolution can influence signals
 - Alter vegetation
- Freshwater flux experiments
- Study additional MIS 5e + MIS 6 time slices (120 ka, 127 ka, 135 ka, 140 ka)
- Passive dust tracers

This work is funded by NSF. The simulations are run on the Cheyenne supercomputer, which is sponsored and maintained by NSF.

Questions?