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Western US Climate during LGM

® |t has been known since the 19th

century that the western US
sustained large lakes during the last
ICe age (Russell 1885, Gilbert, 1890).

® \Nater budget analyses indicate the

lakes required 70 - 140% higher
rainfall levels to be sustained (Ibarra et
al. 2014, Hostetler et al. 1990).

® [he cause of wetter conditions
remained enigmatic until the advent
of climate modeling.
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Reconstructed Pluvial Lakes
Over the Great Basin

Reheis et al. 2014



North American lce Sheets

® [he presence of the North American

ice sheets was the largest driver of
regional climate change.

® [he 3km thick Laurentide ice sheet

covered much of Canada as well as
Chicago and New York.

® Modeling studies indicate the

atmospheric circulation was strongly
INnfluenced by the presence of the

Northern-nemisphere ice-sheets.
(e.g., Kutzbach and Wright 1985, Manabe and
Broccoli 1985, COHMAP Members, 1988: or

more recently; Amaya et al. 2022, Brady et al.
2013, Lora et al. 2017, Kageyama et al. 2021)
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Lake Expansions during Deglaciation
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® (Great basin lakes reached their
maximum size well after the LGM,
generally between 15-18 ka.

® Some compilations indicate lakes in the
northwest reach highstands at a later
time compared to the southeast.

>N @ The reasons for the delayed timing of
lake expansions has remained unclear.
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120°W

Great Basin lake highstand ages (Fu 2023 GRL)
(adapted from compilation of McGee et al. 2018)
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Previous Studies

® [cw studies have addressed this

i R L . e L . ISSUe or given a plausible
pame oA | . explanation for wetter conditions at
G| i comant ::£ 16 ka compared to 20 ka.
8 [ 17 ® Apublicly available modeling study
T F i covering the last deglaciation
——  ™3:  (Trace21ka; Liu et al., 2009) Shows near
e ——— “ : monotonic drying since 20 ka.
Time (ka) \.
) . ® Another study suggested that
; " freshwater forcing from a Heinrich
¢ -l I o | event (HS1) may have played a role
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Hydrological cycle over the last deglaciation from
Trace21ka. (Lora and Ibarra 2019)

(McGee et al. 2018).



iTraCE: a new simulation of the Last Deglaciation

® | use the updated iTraCE simulation, an

update of TraCE-21ka.

(Otto-Bliesner, Brady, Tomas, Liu, and He)

® TraCE: ICESM 1.3, iICAMS5, ICE-6G,
~2° horizontal resolution (+ isotopes).

® TraCE-21ka: CCSM3, CAMS, ICE-5G,
3.75° horlzontal resolutlon
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Hydrological cycle over the Western US

® |n contrast to prior
studies, | find a
robust peak In
Western US rainfall
over the Great Basin
at around 16 ka.

® Annual mean P IS

20% and P-E i1s 39%
higher at 10 ka
compared to 20 ka.

® Compares much

more favorably to
geological evidence.
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Hydrological cycle over the Western US

£0°N P — E (mm/day): PI A(P — E) (mm/day): LGM - PI

® \Netter-than preindustrial
conditions at 20 ka.
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® [raCE shows a robust
. . 20°N
INcrease N P-E over the A(P — E)

Southwestern US post-LGM [P
(~16ka). .

® By 14 ka conditions over o ~
the Great Basin are drier ~ © " ap—e) (mmiay): 14 ka-Lom_

60°N Tz

than 20 ka and transitioning
to modern arid conditions.
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Role of Meltwater, Orbit, and CC)2

P and (P —E) (mm/day) over Great Basin

2.2

® TraCE provides “stacked
forcing” experiments. 20

1.8 A

— iTraCE

— |CE+ORB
ICE

mm/day)
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® Meltwater forcing plays a
principal role, increasing P-E by = 14-
~0.2 mm/day (consistent with McGee  1.2-
et al. 2018). 10
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® Changing orbit and CO, also Lo
play a non-negligible role,

increasing P-E by ~0.15 %22 e
mm/day. ‘@ S = A I~

® Meltwater flux alone cannot

explain lake expansions without °° 5,
changes in orbit and CO.,.
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Decomposing P-E in stacked forcing experiments

16 ka - 16 ka ICE+ORB+GHG 16 ka_ICE+ORB+GHG - 16ka ICE+ORB
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® \Ve decompose the
difference between 16
kaand 20 ka P-E into  **""
iIndividual forcing
agents. 20°N

60°N

40°N -

20°N +— , - | |
150°W 120°W 90°W 150°W 120°W
sumy 16 ka-LGM = (16 ka - 16 ka_ice+orb+ghg) MWTR)
T (16 ka_ice+orb+ghg - 16 ka_ice+orb)
+ (16 ka_ice+orb - 16 ka_ice) (ORB)
+ (16 ka_ice - LGM) ICE)




Mechanisms for 16 ka peak

16 ka - 16 ka ICE+ORB+GHG 16 ka_ICE+ORB+GHG - 16ka_ICE+ORB
® Now we do the same SO S '
for the atmospheric PO
circulation (U500). o
20°N -
® Both greenhouse 3
gasses and changing BO°N -
iINsolation contribute to ~ 60°N -
southward shift of 40°N - -
North Pacific Jet. 20°N - > | sl
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sumy 16 ka-LGM = (16 ka - 16 ka_ice+orb+ghg) (MWTR)
- (16 ka_ice+orb+ghg - 16 ka_ice+orb)
-+ (16 ka_ice+orb - 16 ka_ice) (ORB)
+ (16 ka_ice - LGM) &5




Zonal Mean Surface Temperature

Zonal-mean Surface Temperature Differences

1t ka.LGM ® Meltwater forcing: steepening of
10.0- —— Effect of Meltwater Forcing temperature gradients in the
— S[fect of 3h Foycing northern midlatitudes.
7.5 - Effect of Orbital Forcing
-— Effect of Ice Sheet Forcing
c 0 ® Orbital and GHG forcing: reduced

surface temperature gradient on
the poleward side of the
Midlatitude |jet.

S .
" ® Combine to cause a
southward-detlection of the North
Pacitic Jet at 16 ka.
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Orbital Configuration

® 16 ka conditions were

characterized by higher obliquity

compared to LGM.

® This leads to higher insolation

north of 45°N, and lower

INsolatior

N the midlatitudes.

Annual Average 6S (W/m?)
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Annual-mean insolation distributions for
modern, LGM, and 16 ka conditions.



Summary

| suggest several changing boundary conditions between LGM and 16 ka
conspired to cause the HS1 lake expansions over the western US.

» The presence of the Cordilleran/Laurentide ice sheet lead to a
southward-deflected storm track and wet LGM conditions.

» Polar-amplified warming caused by increasing obliquity and CO,
Maintained a southward shifted et despite ice-sheet retreat.

» Meltwater forcing from HST

further shift/strengthening

p After ~15 ka, the ice sr

ead to a southward-shifted ITCZ and

of the North Pacific jet, contributing to
expansion of Great Basin lakes.

eet retreated rapidly and -

'he storm track

shifted poleward, leading

0 the onset of arid condit

ons.



Thank you for your attention
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