

A Systems Approach to Understanding How Plants Transformed Earth's Environment in Deep Time

Sophia Macarewich NCAR, Project Scientist

William Matthaeus, Jon Richey, Isabel P. Montañez, Jennifer McElwain, Joseph D. White, Jonathan P. Wilson, and Christopher J. Poulsen

JUNE 14, 2023

Linkages between climate change and plant evolution are unclear

Source: Climate Research Division, Environment and Climate Change Canada.

NCAR 2023 CESM Workshop

Source timeline: Gurung et al. (2022), Nature Comm.

Reconstructing time-appropriate vegetation-climate interactions

Trait-Based Whole Plant Functional Strategy

Trait-Based Whole Plant Functional Strategy

Paleo-BGC

Trait-Based Whole Plant Functional Strategy

Case Study: The First Tropical Forests ~300 Mya

Case Study: The First Tropical Forests ~300 Mya

Some of the most well-studied plant fossil assemblages

CESM simulations of the late Pennsylvanian (~300 Ma)

CESM produces time-appropriate atmospheric conditions

High seasonality

Low seasonality

• Relative abundances of cordaites and lepidodendron reflect their distinct leaf-stem adaptations due to moisture availability

• Relative abundances of cordaites and lepidodendron reflect their distinct leaf-stem adaptations due to moisture availability

Tree fern

38-70

Functional-strategy classification

Medullosan

6-7

Lycopsid

3-5

Walchian

23 - 38

WUE

(umol CO-

mmol⁻¹ H₂O)

Reconstructing time-appropriate vegetation-climate interactions

CESM simulations of the late Pennsylvanian (~300 Ma)

Paleo and modern PFTs in Community Land Model v4

Modern and paleo-PFTs produce differences in terrestrial hydroclimate

- Overall, paleo-PFTs are more sensitive to low vapor pressure deficit due to lower stomatal resistance
- In regions where paleo-PFTs amplify dry conditions, competitor plants would likely be replaced by stress tolerant plants

Systems approach to understanding deep veg-climate interactions

ANNUAL REVIEWS

Annual Review of Earth and Planetary Sciences

A Systems Approach to Understanding How Plants Transformed Earth's Environment in Deep Time

William J. Matthaeus,^{1,2} Sophia I. Macarewich,^{3,4} Jon Richey,¹ Isabel P. Montañez,^{1,3} Jennifer C. McElwain,² Joseph D. White,⁵ Jonathan P. Wilson,⁶ and Christopher J. Poulsen⁷

Contact me: Sophia Macarewich macarew@ucar.edu

Additional Slides

- By necessity, ancient plants are represented by closest modern plant functional types (PFTs) in Earth system models
- Functional analogy between extinct and modern plants is decreasingly valid in deep time

modern herbaceous Isoetes

Key Differences

- Water use
- Morphology
- Nutrient uptake

Some of the most well-studied plant fossil assemblages

