
Hierarchical Testing of ESMF/NUOPC
Components

Ufuk Turuncoglu
(turuncu@ucar.edu)

14 Jun 2023, 28th Annual CESM Workshop

This work is supported by the NOAA Joint Technology Transfer Initiative (JTTI)
NA21OAR4590167: Advancing Land Modeling Infrastructure in the UFS for Hierarchical Model Development

Outline

2

● Hierarchical System Development & Testing

● UFS as an example (in terms of its complexity)

● What is the limitations and how it can be improved?

● Initial attempt

○ Testing ESMF/NUOPC cap in an isolated environment

■ Noah-MP land component example

Hierarchical System Development & Testing

3

● Developing multi-component
earth system model is a
challenging task and requires
extensive testing of the
application

● Hierarchical system
development (HSD) refers to
the ability to engage in
development and testing at
multiple levels of complex
prediction software such as UFS (Ek et al, 2019)

● The HSD approach mainly aims to test the entire system from very simple
configurations (single-column, aqua planet) to more complex ones (fully-coupled)

HSD in the UFS Development Process
(Figure adapted from Christian Jakob, BAMS 2010)

Example: NOAA’s Unified Forecast System (UFS)

● The UFS is a community-based, coupled, comprehensive Earth modeling system.

4
Forecast Models diagram developed by UFS System Architecture and Infrastructure Cross-Cutting Team.

Unified modeling requires a
modular and flexible approach to
building complex coupled
systems.

Uses ESMF library for coupling.

Example UFS applications:

UFS GFS:
FV3ATM-MOM6-CICE6-WW3-
GOCART-CMEPS

UFS Hurricane (HAFS):
FV3ATM-HYCOM-WW3-
CMEPS

UFS RRFS:
FV3ATM

https://docs.google.com/drawings/d/1hCNyDVOSOYjmFi5B5l2AmNGOEyxJOUVGYFHd8zl0YEk/edit

Example: UFS Testing System

5

● Automated:

○ CI/CD (Continuous Integration/Continuous Development) testing on the cloud

○ AutoRT on NOAA R&D platforms (i.e. Cheyenne, Orion, Hera). This is also
integrated with GitHub CI/CD system and run on every PR.

● Manual:

■ Same RTs used by AutoRT can be triggered manually. This is the first step
that needs to be done before having PR.

■ opnReqTests: reproducibility (std,thr,mpi,dcp,rst,bit,dbg,fhz)

● The UFS RT system includes: (1) standalone model tests, (2) configurations coupled
with CDEPS data components and, (3) fully coupled configurations. The total number
of tests are 234 and it keeps growing along with new applications and configurations.

More information: https://ufs-weather-model.readthedocs.io/en/latest/AutomatedTesting.html

https://ufs-weather-model.readthedocs.io/en/latest/AutomatedTesting.html

Limitations

6

● In general, users/developers need to checkout entire application to perform testing

○ It is hard if user/developers have no access to supported platforms

○ It is not trivial to port the application to a custom platform (requires expertise)

● There is no easy way to test the standalone model component and its coupling
interface in an isolated environment regularly

○ Requires lots of manual interaction (building dependencies, staging input files,
creating namelist files etc.)

○ Lots of complexities: application specific workflow system, driver, mediator etc.

● Existing testing system/s do not cover all the possibilities. Just small portion of it.

● There is no any convention/standard in terms of testing systems (CIME, UFS RTs etc.)

Solution for Perfect World?

7

● Each individual model component exposes its tests and configurations using
standardized way independent from used modeling system/application

○ The configurations range from very simple to complex ones

○ Published along with the source code (probably through the GitHub)

○ The top-level application inherits those tests and blend them together in a
specified way to create more complex tests

○ Enable to use same unit tests (provided by model) across different
modeling systems.

○ Allow to integrate simple configurations with CD/CI

● Requires definition of the rules/standards to represent individual tests, their
requirements and the way of blending them together

Testing ESMF/NUOPC Interface?

8

● New hierarchical testing capabilities (example from Noah-MP land component):

Global
NoahMP
(C96) forced
by GSWP3
(CDEPS
DATM)

nuopc-comp-testing
repository

NOAA-EMC/noahmp
repository

Install core development tools
(apt-get install)

Install dependencies *
(Spack)

Install CDEPS data components
(i.e. DATM)

Install model component that needs
to be tested (i.e. Noah-MP)

Create run directory for test

Get inputs (wget, ftp, Amazon
S3 bucket) via Python *

Create namelist and
configuration files (ParamGen)

Create model executable
(generic driver NUOPC/ESMX)

Execute tested configuration

Baseline Check (PASS/FAIL) *

* Steps that uses GitHub cache mechanisms

VM / Containerized Environment

GitHub
Action

GitHub
Action

https://github.com/esmf-org/nuopc-comp-testing

https://github.com/spack/spack
https://github.com/esmf-org/nuopc-comp-testing

Handling Dependencies

9

● Spack package manager is used to install dependencies of the specified configuration

● The dependencies are defined
as a input argument to
nuopc-comp-testing composite
action

● The composite action creates
spack.yaml based on user request
and install all dependencies such
as ESMF, MPI, FMS etc.

● The compiler is installed using apt
package manager but it is
possible to install using Spack too.

https://github.com/spack/spack

Creating Executable

10

● ESMF/NUOPC provides generic driver layer to run the test configuration

● Earth System Modeling eXecutable (ESMX)

● Improved version of ESMX layer will be
available in the next public release (8.5.0)

New Coupling Application Layer:

● provides an executable
● provides a NUOPC-based coupled system

driver
● uses CMake to embed components into a

system - YAML based specification

Motivations:

● Accelerate development of new
NUOPC-based systems.

● Introduce mechanism for testing model
components and coupling systems.

● Reduce maintenance cost for established
NUOPC-based systems.

● Standardize processes for NUOPC-based
systems. (configuration files, build
procedures, etc.)

● Accelerate new feature roll-out for
NUOPC/ESMF. A

da
pt

ed
 fr

om
 D

an
 R

os
en

’s
 M

ar
ch

 3
0t

h,
 2

02
3

U
FS

 p
re

se
nt

at
io

n

https://github.com/esmf-org/esmf/blob/develop/src/addon/ESMX/README.md
https://github.com/esmf-org/esmf/tree/develop/src/addon/ESMX
https://github.com/esmf-org/nuopc-comp-testing/blob/main/scripts/create_exe.sh

Handling Inputs

11

● Generic Python interface to retrieve input (wget, ftp, s3 via Python or s3 CLI)

wget from GitHub

wget from SVN

s3 from AWS

https://github.com/esmf-org/nuopc-comp-testing/blob/main/scripts/get_input.py

Handling Namelist Files

12

● The model configuration is defined by the set of YAML files

● The basic configuration to test coupling interface
is data component forced model

● The namelist handling is supported by slightly
modified version of ParamGen (Thanks to Alper!)

Summary

13

● NUOPC component testing action provides standardized way to run low-res
configuration of the ESMF/NUOPC complaint model component in an isolated
environment through the GitHub Action

○ The current version is 1.1 and the documentation is in here.

○ Multiple tests can be defined

■ Same configuration forced by different datasets

■ Testing ESMF/NUOPC cap against different version of ESMF library

● Enables testing component through the development in an automatized way

● Provides set of standard/conventions to define tests

○ Tests live along with the code and tested against the new developments

https://github.com/esmf-org/nuopc-comp-testing
https://github.com/esmf-org/nuopc-comp-testing/blob/main/README.md

