Hierarchical Testing of ESMF/NUOPC
Components

Ufuk Turuncoglu
(turuncu@ucar.edu)

14 Jun 2023, 28th Annual CESM Workshop

This work is supported by the NOAA Joint Technology Transfer Initiative (JTTI)
NA210AR4590167: Advancing Land Modeling Infrastructure in the UFS for Hierarchical Model Development

Outline

Hierarchical System Development & Testing
UFS as an example (in terms of its complexity)
What is the limitations and how it can be improved?
Initial attempt
o Testing ESMF/NUOPC cap in an isolated environment

m Noah-MP land component example

Hierarchical System Development & Testing

Developing multi-component
earth system model is a
challenging task and requires
extensive testing of the
application

Hierarchical system
development (HSD) refers to
the ability to engage in
development and testing at
multiple levels of complex

HSD in the UFS Development Process
(Figure adapted from Christian Jakob, BAMS 2010)

Unified
Forecast
System

Select UFS
application:

Medium-range
weather; S2S; etc.

System calibration: Important for application

Design system
improvements and
assess impacts
across all UFS
applications

Focused studies: Great insight
into detailed behavior, impact on
application performance varies

_ e L
tools - may

performance, but limited insight into detailed behavior

Assess UFS
application

Find processes

and phenomena

of relevance

Perform detailed

include multiple
UFS applcations

Select suitable
studies focused on
application details:

Model; Coupling;
Obs and DA

prediction software such as UFS (Ek et al, 2019)

The HSD approach mainly aims to test the entire system from very simple
configurations (single-column, aqua planet) to more complex ones (fully-coupled)

Example: NOAA’s Unified Forecast System (UFS)

The UFS is a community-based, coupled, comprehensive Earth

UFS System Architecture: Sub-system: Forecast Models KEY :
Contributors: Rocky Dunlap, Rahul Mahajan, Dom Heinzeller, FIO Do . D]
Mike Barlage, Ben Cash Tonanemas S powt 2 lanned) { i COMMENT |
©_only through UFS main 2 B o g
 or JEDIOOPS for drivi
forecast.
i Actual model components N
e | UFS MAIN (Forecast only main program) | JEDI/00PS |
 application and run 3
: sequence are configurable. . ——— Foranuse I
E S —
I UFS Unified Driver B
- A ——
. ———Fortran use 3
NUOPC Cap ¥ NUOPC Cap .
UFS code Sea lce \ e PRI :
Atmosphere q : Notall model
NUOPE- i components shown.
Connectors : New model components
. can be introduced into 1
§ NUOPG Cap " the architecture.
: g 0 N " 1 4 |
T —— ’ /
i NASAGOCART NUOPC Cap . 10N
gl b NUOPC Cap NUOPC Cap NUOPC Cap
G " Aerosol
i L Land Hydrology Ocean
Aerosol introduced with ol
NUOPC and CCPP :
options. E =
i Option for in-ine land Creation of NUOPC-com In development under JTTI; :
i through CCPP or separate NoahMP component is in current implementation does not
i land component. progress. go through Mediator, but connects
i directly to the atmosphere 1 il o
e i Data models being introduced
: asacommon way tobringin
e oo A aibRoR ekt
“"Data” component can CDEPS (code) : of co?pling feedbacks.]
Rl ode bt R]
et tonponer i 1o NUOPC Cap NUOPC Cap NUOPC Cap NUOPC Cap
bring in forcings from fle. K-+ [up e “Data” “Data” “Data”
PR Atmosphere Ocean Wave

Foreéast Models diagram developed by UFS System Architecture and Infrastructure Cross-Cutting Team.

modeling system.

Unified modeling requires a
modular and flexible approach to
building complex coupled
systems.

Uses ESMF library for coupling.
Example UFS applications:
UFS GFS:
FV3ATM-MOM®6-CICEB-WW3-
GOCART-CMEPS

UFS Hurricane (HAFS):
FV3ATM-HYCOM-WW3-

CMEPS

UFS RRFS:
FV3ATM

https://docs.google.com/drawings/d/1hCNyDVOSOYjmFi5B5l2AmNGOEyxJOUVGYFHd8zl0YEk/edit

Example: UFS Testing System

Automated:
o CI/CD (Continuous Integration/Continuous Development) testing on the cloud

o AutoRT on NOAA R&D platforms (i.e. Cheyenne, Orion, Hera). This is also
integrated with GitHub CI/CD system and run on every PR.

Manual:

m Same RTs used by AutoRT can be triggered manually. This is the first step
that needs to be done before having PR.

m opnReqTests: reproducibility (std,thr,mpi,dcp,rst,bit,dbg,fhz)

The UFS RT system includes: (1) standalone model tests, (2) configurations coupled
with CDEPS data components and, (3) fully coupled configurations. The total number

of tests are 234 and it keeps growing along with new applications and configurations.

5
More information: https://ufs-weather-model.readthedocs.io/en/latest/AutomatedTesting.html

https://ufs-weather-model.readthedocs.io/en/latest/AutomatedTesting.html

Limitations

In general, users/developers need to checkout entire application to perform testing
o ltis hard if user/developers have no access to supported platforms
o ltis not trivial to port the application to a custom platform (requires expertise)

There is no easy way to test the standalone model component and its coupling
interface in an isolated environment regularly

o Requires lots of manual interaction (building dependencies, staging input files,
creating namelist files etc.)

o Lots of complexities: application specific workflow system, driver, mediator etc.
Existing testing system/s do not cover all the possibilities. Just small portion of it.

There is no any convention/standard in terms of testing systems (CIME, UFS RTs etc.)

Solution for Perfect World?

Each individual model component exposes its tests and configurations using
standardized way independent from used modeling system/application

o The configurations range from very simple to complex ones
o Published along with the source code (probably through the GitHub)

o The top-level application inherits those tests and blend them together in a
specified way to create more complex tests

o Enable to use same unit tests (provided by model) across different
modeling systems.

o Allow to integrate simple configurations with CD/CI

Requires definition of the rules/standards to represent individual tests, their
requirements and the way of blending them together

Testing ESMF/NUOPC Interface?

e New hierarchical testing capabilities (example from Noah-MP land component):

L workflows

— data

tilel.nc
tile2.nc
tile3.nc
tile4.nc
tile5.nc
tileé.nc

C96.initial.
C96.initial.
C96.initial.
C96.initial.
C96.initial.
C96.initial.
— datm_noahmp.yaml
L— tests
— test_datm_1nd
datm.yaml
1nd.yaml
L— test_datm_1lnd.yaml

[TTTTI

=

action.yaml
README . md
scripts
concretize_deps.sh
create_exe.sh
gen_config.py
gen_runseq.py
get_input.py
install_deps.sh
paramgen
paramgen.py
paramgen_utils.py
xml_schema
L— entry_id_pg.xsd

GitHub
NOAA-EMC/noahmp
\ repository

O;’

GitHub

nuopc-comp-testing
repository

S v

Vs

~N

Baseline Check (PASS/FAIL) *]

-

-
Execute tested configuration },

\

Install core development tools
(apt-get install)
y
Install dependencies *
(Spack)

Install CDEPS data components
(i.e. DIATM)
-------- ~ I

(Install model comvponent that needs)
to be t:ested (i-e. Noah-MP)
i !
Create model executable
(genericidriver NUOPC/ESMX)
!

7£ " Create run directory for test

J

~

Get inputs (wget, ftp, Amazon]

S3 bucket) via Python *

Create namelist and
configuration files (ParamGen)

)

* Steps that uses GitHub cache mechanisms /

https://github.com/esmf-org/nuopc-comp-testin

Global
NoahMP
(C96) forced
by GSWPS3
(CDEPS
DATM)

https://github.com/spack/spack
https://github.com/esmf-org/nuopc-comp-testing

Handling Dependencies

e Spack package manager is used to install dependencies of the specified configuration
|

esmfE${{ matrix.esmf }}+external-parallelio

dependencies:

v Create spack.yaml
spack:

e The dependencies are defined
concretizer: .
targets: as a input argument to
SrEia s e nuopc-comp-testing composite

host_compatible: false

unify: when_possible Ei()ti()f]
specs:

- esmf@8.5.0bl0+external-parallelio %gcc@11.3.0 target=x86_64

Cackaces: e The composite action creates
el spack.yaml based on user request

target: ['x86_64'] . .
Comniler: [orcelt o ol and install all dependencies such

view: /home/runner/.spack-ci/view as ESMF, MPI, FMS etC

config:

source_cache: /home/runner/.spack-ci/source_cache

misc_cache: /home/runner/.spack-ci/misc_cache ® The Compiler iS inSta”ed USing apt
install tise: package manager but it is
root: /home/runner/.spack-ci/opt pOSSible tO insta” USing SpaCk tOO.

install_missing_compilers: true

test_cache: /home/runner/.spack-ci/test_cache

https://github.com/spack/spack

Creating Executable

e ESMF/NUOPC provides generic driver layer to run the test configuration

e Earth System Modeling eXecutable (ESMX)

New Coupling Application Layer:

e provides an executable

e provides a NUOPC-based coupled system
driver

e uses CMake to embed components into a

system - YAML based specification

e Improved version of ESMX layer will be
available in the next public release (8.5.0)

Motivations:

Accelerate development of new
NUOPC-based systems.

Introduce mechanism for testing model
components and coupling systems.
Reduce maintenance cost for established
NUOPC-based systems.

Standardize processes for NUOPC-based
systems. (configuration files, build
procedures, etc.)

Accelerate new feature roll-out for
NUOPC/ESMF.

Adapted from Dan Rosen’s March 30th, 2023 UFS presentation

—

0

https://github.com/esmf-org/esmf/blob/develop/src/addon/ESMX/README.md
https://github.com/esmf-org/esmf/tree/develop/src/addon/ESMX
https://github.com/esmf-org/nuopc-comp-testing/blob/main/scripts/create_exe.sh

Handling Inputs

e Generic Python interface to retrieve input (wget, ftp, s3 via Python or s3 CLI)

13 input:
14 field_table: wget from GitHub
15 protocol: wget
16 end_point: 'https://raw.githubusercontent.com'
17 files:
18 #- /ufs—-community/ufs-weather-model/develop/tests/parm/fd_nems.yaml
19 — /uturuncoglu/ufs-weather-model/feature/noahmp/tests/parm/fd_nems.yaml
20 force: True
2 input:
3 forcing: wget from SVN
4 protocol: wget
5 end_point: 'https://svn-ccsm-inputdata.cgd.ucar.edu'
6 files:
7 - /trunk/inputdata/atm/datm7/atm_forcing.datm7.GSWP3.0.5d.v1.c170516/Precip/clmforc.GSWP3.c2011.0.5x@.5.Prec.1999-12.nc
8 - /trunk/inputdata/atm/datm7/atm_forcing.datm7.GSWP3.0.5d.v1.c170516/Precip/clmforc.GSWP3.¢c2011.0.5x0.5.Prec.2000-01.nc
2 input:
3 s s3 from AWS
4 protocol: s3
5 end_point: noaa-ufs-regtests—pds
6 files:
7 - input-data-20221101/FV3_fix_tiled/C96/C96.maximum_snow_albedo.tilel.nc
8 - input-data-20221101/FV3_fix_tiled/C96/C96.maximum_snow_albedo.tile2.nc M

https://github.com/esmf-org/nuopc-comp-testing/blob/main/scripts/get_input.py

Handling Namelist Files

The model configuration is defined by the set of YAML files 4o

The basic configuration to test coupling interface

is data component forced model

The namelist handling is supported by slightly
modified version of ParamGen (Thanks to Alper!)

69
70
71
72
73
74
75
76

132
133
134
135
136
137
138
139
140
141
142
143

nml:

name: input.nml
content:
fms_nml:
clock_grain:
values: "'ROUTINE'"
clock_flags:
values: "'NONE'"
domains_stack_size:
values: 5000000
stack_size:
values: ©

72
73
74
75
76
77
78
79
80
81

nuopc2:

name: datm.streams

content:

no_group:

stream_info:

values:

|

CLMGSWP3v1.Solar01l
CLMGSWP3v1.Precip02
CLMGSWP3v1.TPQWO3
topo.observedd4

config:
nuopc:
name: esmxRun.config
content:
no_group:
LND_model:
values: noahmp
LND_petlist:
values: 0-5
LND_attributes:
Verbosity:
values: ©
Diagnostic:
values: ©

12

Summary

NUOPC component testing action provides standardized way to run low-res
configuration of the ESMF/NUOPC complaint model component in an isolated
environment through the GitHub Action

o The current version is 1.1 and the documentation is in here.
o Multiple tests can be defined
m Same configuration forced by different datasets
m Testing ESMF/NUOPC cap against different version of ESMF library
Enables testing component through the development in an automatized way
Provides set of standard/conventions to define tests

o Tests live along with the code and tested against the new developments

13

https://github.com/esmf-org/nuopc-comp-testing
https://github.com/esmf-org/nuopc-comp-testing/blob/main/README.md

